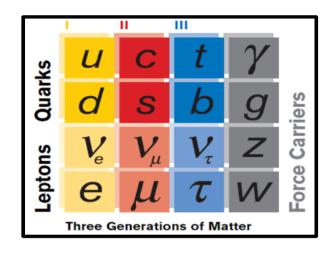

Doctoral Thesis Committee Meeting

Shawn Kwang Advisor: Mel Shochet

University of Chicago

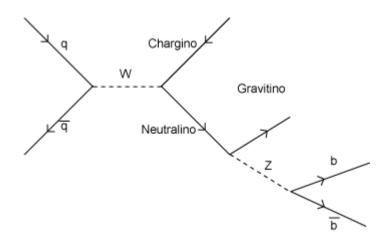
Introduction


- Introductions
- The Problem
 - Standard Model of Particle Physics
 - Searches Outside the SM: displaced verticies
- Phenomenology
 - Hidden Valley Model
- Signal Monte Carlo Studies
 - Look for basic discriminants
- The Analysis

The Standard Model

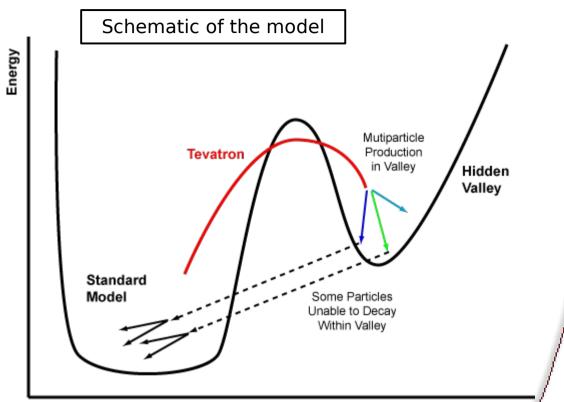
- The Standard Model (SM)
 - One of the best measured theories in physics.
 - So we're done, right?
 - It turns out the standard model is incomplete.
 - Plus there is that elusive Higgs boson that keeps slipping through our fingers.
- New physics searches
 - Why? A: Not to get too philosophical, but why not?
 - One of the many definitions of science is probing the unknown.
 - At FermiLab we have the world's largest (soon to be second-largest) "flashlight" with the ability to look into the unknown.
- Where/How do we look?
 - Look at a specific signature that is interesting and may be a window into new physics, e.g. displaced verticies.

Displaced Verticies


- Why look at displaced verticies?
 - It is an interesting signature outside of the SM.
 - While there are long lived particles in the SM (K, D, & B hadrons) there are few SM processes for two objects originating from a single common vertex.
- Some Previous Analyses:
 - Done at CDF-looking for a long-lived particle decaying into $Z^0 \rightarrow \mu^+ \mu^-$ by looking at the tracking information.
 - Finds the track intersection of the muons, and looks for a large distance between this intersection and the primary vertex.
 - Done at D0-looking for a long-lived particle decaying into $Z^0 \rightarrow e^+e^-$ by looking at calorimeter information.
 - D0 Electro-Magnetic calorimeter is finely segmented, allowing for vertex resolution.
- Because we can.
 - CDF employs a Silicon Vertex Trigger (SVT) that can trigger on displaced tracks.
 - This trigger allows us to enrich our signal while reducing the QCD background present at hadron colliders.
- What are we looking for:
 - In general we are searching for a long lived object decaying into two quarks, which then hadronize into jets in the detector.

Phenomenology

- There are a number of theories where displaced verticies play a role.
 - Hidden Valley model by Matt Strassler (Rutgers) and others.
 - The SM communicates with a Hidden Valley with valley (or v-) particles.
 - We wound up adopting this model for our search.
 - See next slide for more details.
 - Gauge-mediated SUSY models where the gravatino is the Lightest Stable Particle (LSP).
 - If the next to lighted stable particle (NLSP) has a large \widetilde{Z} content, then it may decay to a Z^0 boson and the LSP.
 - The sparticle content of the NSLP is a free parameter in some SUSY models.



Hidden Valley

- Energy from collisions enter into the new sector.
- It is transformed into multiple particles through the dynamics of the new sector.
 - These valley-particles (or vparticles) behave in the same way as SM particles.
 - They obey a "v-QCD,"
 - Most likely decay is a ν- π .
- Some of these particles decay back into SM particles.
- This model can co-exist with other models as well.
 - SUSY, technicolor, etc.
- It may help in the search for the Higgs.
 - The Higgs may decays into long-lived neutral v-particles, which are heavy and meta-stable. They would decay at a displaced vertex.
 - These would then decay into the heaviest SM fermion available (b-quarks).
- Because this sector is dark, there may be Dark Matter/Astrophysics connections as well.
- In some models (see Kaplan, Luty, Zurek) cτ for the heavy Shawn Kwang

Inaccessibility

Hidden Valley

- The Hidden Valley model provides a large, and dark, sector which is weekly constrained by current experiments.
 - In general, experiments at LEP, CDF, BABAR have little or no constraints on neutral particles with small couplings to photons or Z⁰.
 - In particular particles that have no weak, electric or color charge.
- Because this model has few constraints, there are a large number of experimental signatures that are possible.
 - We have chosen to concentrate on one signature, displaced verticies, and one model, Higgs production.
 - The signature provides sensitivity to a broad range of heavy metastable particles.
 - The model provides a benchmark result that can later be translated for other theories.

FermiLab

- FermiLab is the home of the Tevatron, a proton-antiproton accelerator and collider.
- Proton-antiproton collisions occur at a center of mass energy of 1.8 TeV.
- CDF is one of two detectors (D0) located along the main ring (rear ring in photo).

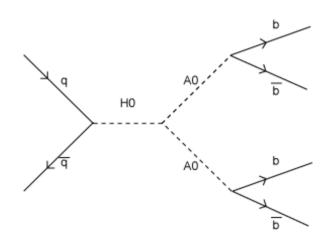
CDF

Collider Detector at Fermilab (CDF)

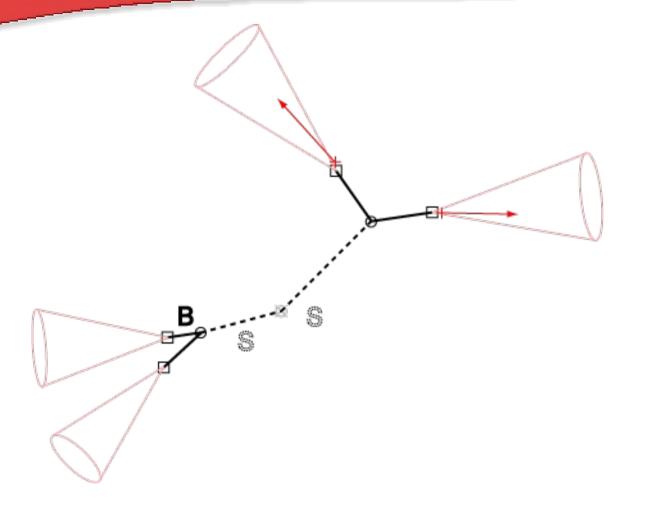
- CDF is a cylindrically symmetric multipurpose particle detector.
- Major components consist, from inside to out:
 - Silicon strip tracker (SVXII) (green)
 - Wire tracking chamber (COT) (orange)
 - ▶ 1.4 T Solenoid (white)
 - Electromagnetic and Hadronic calorimeters (red) and (blue)
 - Series of wire chambers and scintillators, collectively the "muon system." (cyan)

For this analysis we use nearly all these systems, especially the silicon tracking system.

There is a silicon track trigger (SVT) which can trigger on displaced tracks.



MC Studies

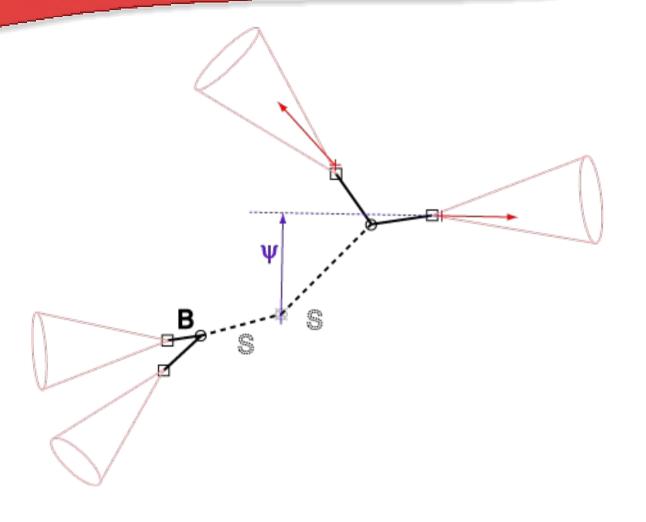

- First thing we did was generate some signal MC to study. This was done with Pythia w/ the CDF detector simulation and CDF "tunes."
 - The decay chain is: $H_0 \rightarrow A_0 A_0 \rightarrow b$, bbar, b, bbar.
 - Here the Higgs is a MSSM Higgs.
 - The Higgs has been constrained to decay into A_0 s.
 - The A_0 represents a hidden valley particle (v-π) that has a long lifetime.
 - The proper lifetime studied so far is $c\tau = 1.0$ cm.
 - \blacktriangleright We generate different masses of H_0 s and A_0 s.
 - \rightarrow H_o = 130 GeV and 170 GeV
 - $A_0 = 20 \text{ GeV}, 40 \text{ GeV}, \text{ and 65 GeV}$
 - \blacktriangleright The A_0 s are constrained to decay into b, bbar quark pairs.
 - The MC also simulates an underlying event.

Model Diagrams

Here the Higgs decays at the primary vertex (the X). S represents the heavy pseudoscalar with a long lifetime, which decays into bbbar pairs.

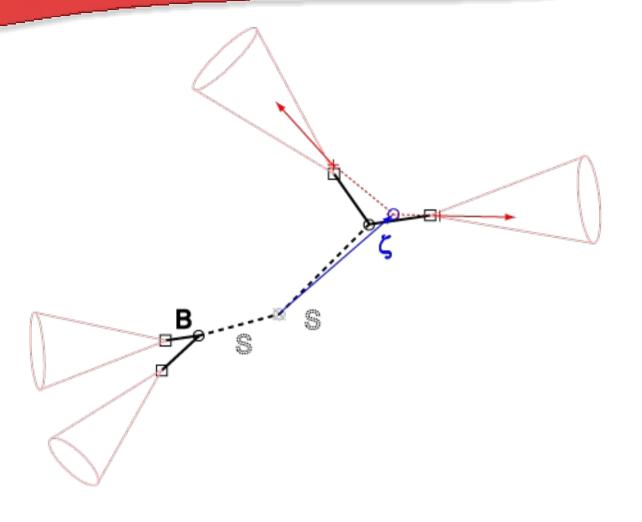
The pink cones represent the hadronization of the B hadrons into jets.

The red represents reconstructed secondary verticies and their corresponding momentum.


MC Studies

- Compared this signal MC to a background MC, QCD bbbar (also Pythia).
- A tactic of this search is to use SecVtx because it is already used for Top physics.
 - B-tagging is vertexing tracks displaced from the primary vertex to determine if there is a secondary vertex.
 - SecVtx the canonical secondary vertex finder at CDF.
- Unfortunately because SecVtx is designed for Top physics it has certain limitations
 - There is a d_0 cut on tracks considered for vertexing $(d_0 < 0.15 \text{ cm})$.
 - d_0 is the 2-dimensional distance of closest approach of the track to the primary vertex, i.e. the impact parameter.
 - Our MC study showed that few tracks from a $c\tau=1$ cm displaced decay vertex will pass this cut.
- \blacktriangleright As a result we loosened this d₀ cut in the MC for studies.
 - A new b-tagger was written, TStnSVF, which allows me to change this max d_0 cut on tracks easily, without reprocessing all the data.

ψ/ζ Diagrams



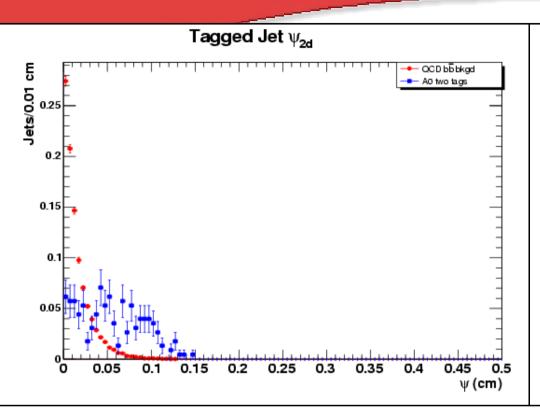
 $\boldsymbol{\psi}$ is the impact parameter of a jet with a secondary vertex.

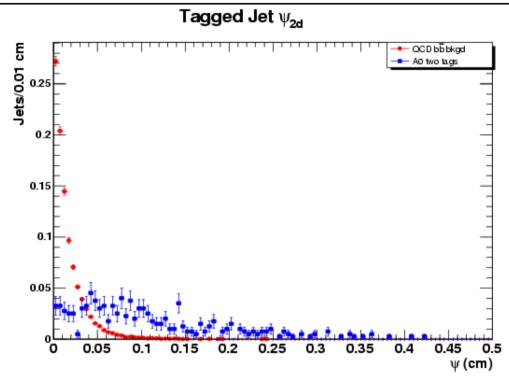
ψ/ζ Diagrams

 ζ is the reconstructed decay distance of the heavy pseudoscalar S (A $_{\!\scriptscriptstyle 0}$). It requires two tagged jets.

Background Diagrams

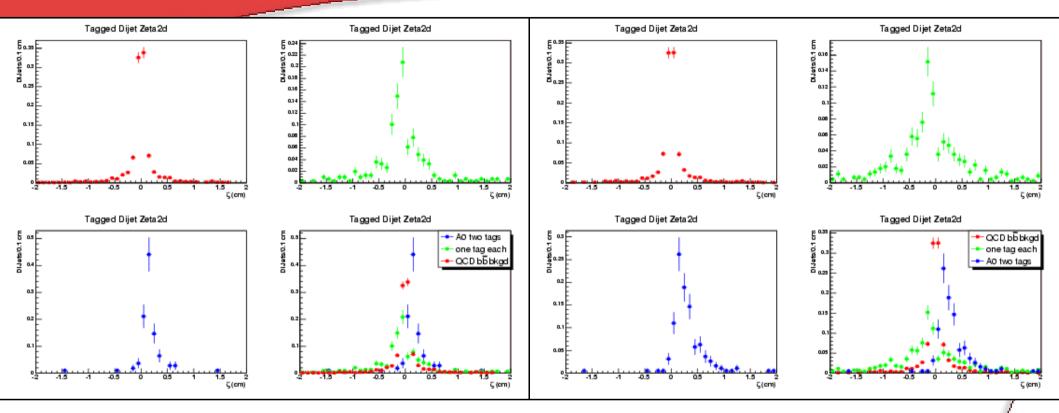
Here is a typical QCD di-jet event with two b quarks (b & bbar) decaying into two B hadrons. Each has a reconstructed secondary vertex represented by a red cross. Both ψ/ζ are very small for these background events.




MC Studies

- New Variables were developed: Psi(ψ) and Zeta(ζ).
- \blacktriangleright ψ is the impact parameter of the jet.
 - ▶ Take the secondary vertex of a jet, it as a position and a direction (momentum), which can be traced back to the primary vertex to give a distance of closest approach (DCA) in 2-dim space.
- \triangleright ζ is the intersection of multiple jet directions in 2-dim space.
 - This is the reconstructed decay vertex of the A0.
 - It can be positive or negative (like a b-tag).
- There are a few more discriminants of use, but they are not very powerful.
 - \blacktriangleright Delta R, separation in η- ϕ space, between the jets.
 - \blacktriangleright Distance between the secondary verticies (Δ S).
 - \blacktriangleright Average L_{2d} of the secondary verticies.
 - L_{2d} is the two-dimensional distance of the secondary vertex to the primary vertex, projected onto the momentum vector of the jet.
 - Δ S vs. L_{2d}.
- In the histograms on the next slides, I show two different track max d_0 cuts compared to one another.
 - ightharpoonup E_Tmin = 10 GeV.
 - $|\eta| < 1.0$, jets must be in the central ($\theta \sim 45^{\circ}$) of the detector.

ψ/ζ Histograms



- Left: $d_0 < 0.15 \text{ cm}$; Right $d_0 < 0.45 \text{ cm}$
 - \blacktriangleright Blue: Signal MC, b-quark jets from A_0 s.
 - Red: b, bbar dijet MC for comparison
 - Histograms have been normalized to one.
- This is to give a flavor of what we are looking at, without showing dozens of histograms.
- \blacktriangleright When the d_0 cut is relaxed, we gain signal events, especially along the tail.

ψ/ζ Histograms

- Left: $d_0 < 0.15 \text{ cm}$; Right $d_0 < 0.45 \text{ cm}$
 - \blacktriangleright Blue: Signal MC, b-quark jets from A_0 s.
 - Green: The case where one tagged b-quark jet is from one A_0 while the other tagged b-quark jet is from the other A_0 .
 - Red: b, bbar dijet MC for comparison
- Backgrounds are distributed around zero, while signal is nearly all positive,

Backgrounds

- In the previous histograms I have shown QCD dijet b,bbar MC as background.
 - This was done to provide a visual comparison.
 - The QCD background is much larger than what is shown.
- In addition, Pythia MC is not a very good substitute for the background.
 - Detector effects that create more fake b-tagged jets than MC can model.
- We plan to use data-driven backgrounds for this analysis.

Current Status

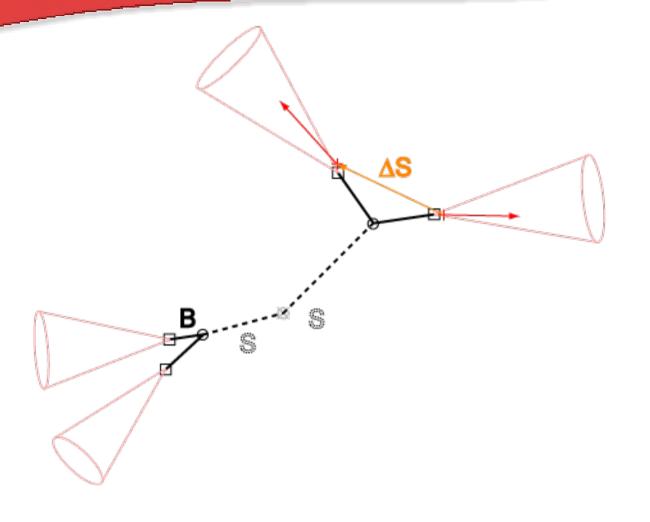
- We currently have nearly all the data we need.
 - The data is already processed and at FermiLab.
 - ZBB trigger is our main trigger sample for seaching for signal.
 - Trigger was designed to trigger on quark-jets with displaced tracks within them.
 - However, there is nothing about this trigger that precludes our signal.
 - Two jets (10 GeV) in the central region of the detector ($|\eta|$ <1.0), two tracks either $\Delta \phi$ < 30 or $\Delta \phi$ > 150 in one or both jets.
 - No plug jets greater than 5 GeV. This is to reduce the trigger rate at high luminosities.
 - Large sample of QCD dijets available, with different energy thresholds.
 - 5, 10, 20, 50, 70, 100 GeV
- We have a small sample of signal MC, which you saw here, which we have been using to study the discriminants.
 - But we will need more to be able to set a limit or claim discovery.
 - Need to get the Higgs physics group at CDF to help with this effort.
- We have a b-tagger that can operate on these datasets quickly with very little overhead.
 - Data reprocessing would take too long.

Analysis Strategy

- The analysis strategy is to remove as much of the background as possible. Thus we are searching for any events above zero.
- We need real data based background.
 - MC gets the shapes right, but not the numbers. -Chris Neu
- **Me** will use ψ as our primary variable for background estimation.
 - Build ψ p.d.f.s for "background" jets.
 - Mundane b background: QCD bb, ttbar, ZZ etc.
 - Mundane c background: QCD cc, ZZ
 - Light flavor background: QCD qq/gg
 - (Others such as tau hadronic)
 - Use data triggers when possible to build these p.d.f.s.
 - Muon/Electron calibration data, which is rich is heavy flavor jets
 - Pythia QCD cc MC
 - Single Tower 5, 10 jet data, for light-quark and gluon jets
 - These p.d.f. are per jet (not per event).
 - These per jet p.d.f.s can be applied to multijet QCD production, either data or MC, to estimate the final background and decide on the ψ and ζ cuts.
- Then we use the ZBB trigger data to search for the signal.
 - Make a series of signal region cuts using variables like Delta R, etc.
 - Make the ψ and ζ cuts.
 - Plot the resulting dijet mass distributions.

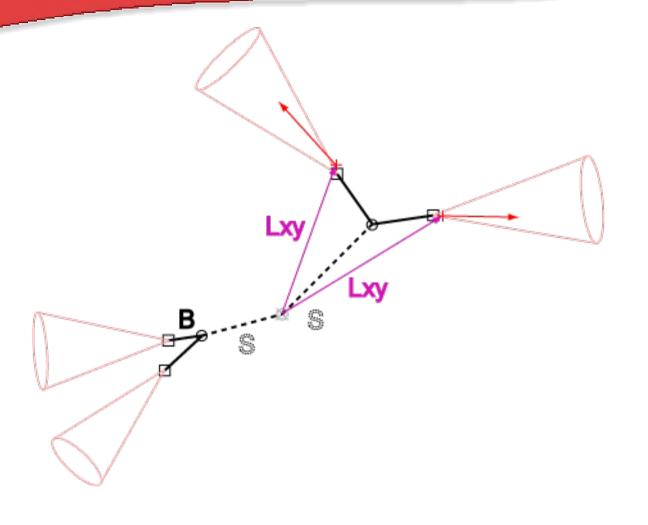
Conclusion

- We are currently working on a displaced vertex search at CDF.
- We have a model, Hidden Valley, which produces the signature which we are looking for.
- Currently we are trying to determine what max-d₀ cut to use for the b-tagger.
 - \blacktriangleright We are looking at the efficiency in our signal MC as a function of the d₀ cut.
 - \blacktriangleright We are also looking at the fake tagging rate as a function of this d₀ cut.
 - This is being done with real data from CDF. This will help reduce our backgrounds.
- Goal finish by the end of the summer.


Backup Slides

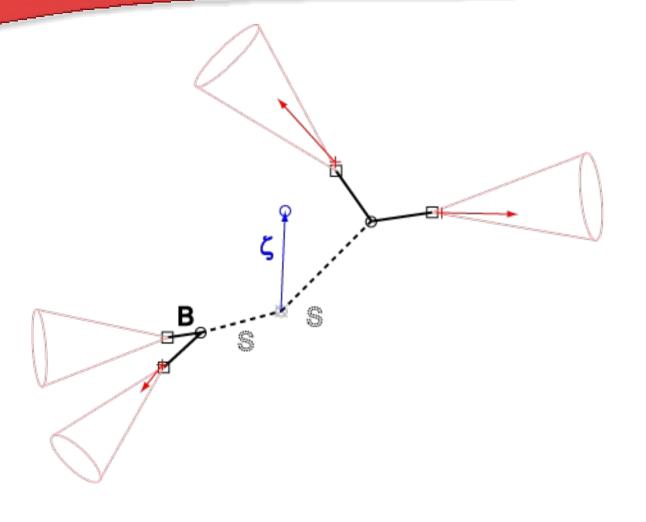
- Additional Diagrams
- Additional Discriminants

Add. Diagrams



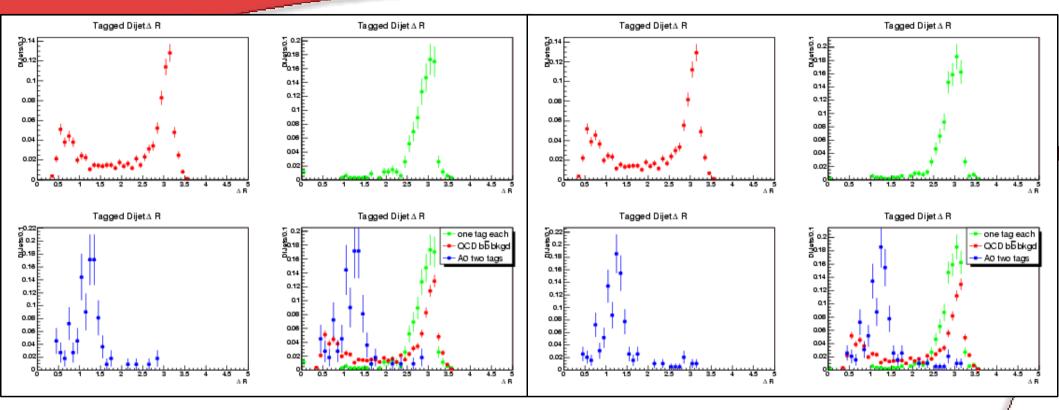
 ΔS is the distance between two of the B hadrons decaying from a heavy pseudoscalar S (A $_0$). It requires two tagged jets.

Add. Diagrams



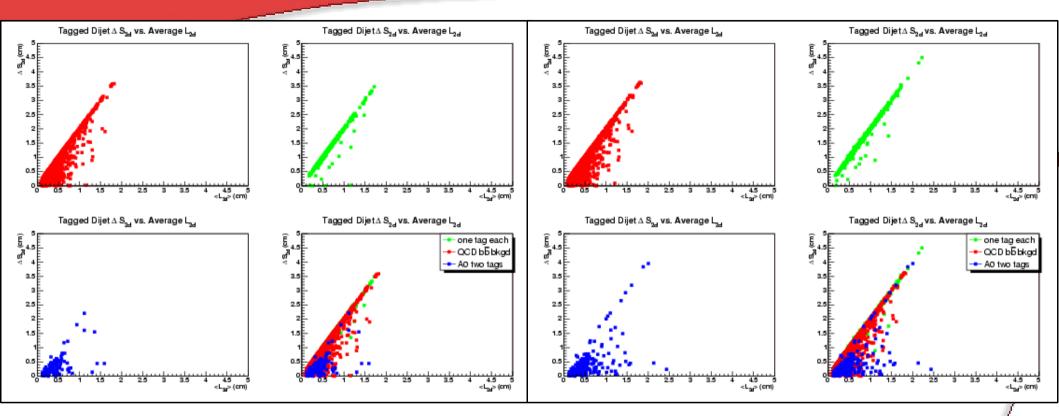
 L_{xy} is the two-dimensional distance from the primary vertex to the secondary vertex, shown here for both b-tags. L_{2d} is L_{xy} projected onto the jet momentum vectors (not shown).

Wrong Combination



If two b quarks, each from a different A_0 s, are b-tagged, then the wrong combination may be present. In this case, the B at the lower-left and the B from the upper-right has would have ζ shown above.

Add. Histograms



- Left: $d_0 < 0.15 \text{ cm}$; Right $d_0 < 0.45 \text{ cm}$
 - ightharpoonup Blue: Signal MC, b-quark jets from A₀s.
 - ightharpoonup Green: One tag from each A_0 .
 - Red: b, bbar dijet MC for comparison
 - Histograms have be normalized to one.
 - $ightharpoonup \Delta R$ for signal is much smaller than for background.

Add. Histograms

- Left: $d_0 < 0.15 \text{ cm}$; Right $d_0 < 0.45 \text{ cm}$
 - \blacktriangleright Blue: Signal MC, b-quark jets from A_0 s.
 - ightharpoonup Green: One tag from each A_0 .
 - Red: b, bbar dijet MC for comparison
- The x-axis the $\langle L_{2d} \rangle$ of the two tagged b-jets, the y-axis is the distance between the two secondary veritices.
 - QCD and wrong combo. backgrounds follows a diagonal line.
 - Signal has large <L $_{2d}>$ but small Δ S.

